

セキュリティからみた制御の将来

橋本芳宏 (名古屋工業大学)

第69回VEC協賛セミナー 2020年9月18日(金)オンライン

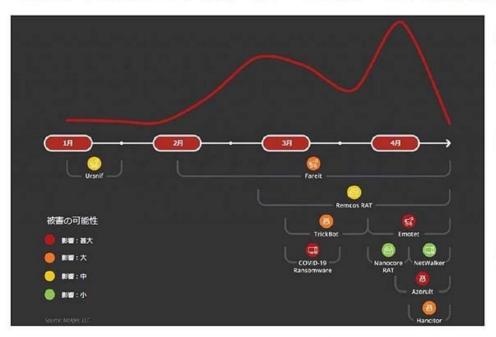
2020年の重大トピック COVID-19

- 世界中でLock down
- ・感染防止で移動できない
- 在宅勤務航空会社、観光業、飲食店の倒産 都心のオフィス解約デリバリー産業の繁盛

ポスト・コロナ、ウィズ・コロナの社会変革

• ICS(Industrial Control Systems)の現場では?

コロナ禍でのICSの現場は?

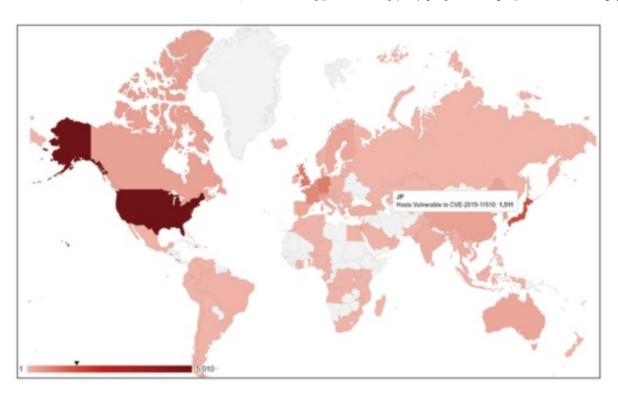

- ・24時間操業を支える運転員の感染防止 外部の人間との接触を回避
 - 直の引継ぎも、テレビ会議システム
 - •トラブルや工事の対応は、
 - ・部品が送られてきて、現場作業員が リモートからの支援で補修作業
 - 外部業者が作業するが、現場での監督や立会検査はリモートか時間差
 - ・無症状者からの感染を回避するため、 立入作業者の入構前1週間の生活も管理して、 共同作業

リモート化の進展

急速なリモートワークの進展による セキュリティ問題(1)

• COVID-19問題のフィッシングサイトやマルウェアが多発

2020年第1四半期(1~3月)の脅威動向


COVID-19を悪用するマルウェアファミリーの蔓延 フィッシング攻撃、偽のWebサイト、マルウェアなどが急増

- 1月 Ursnif (ファイル名にCoronavirusを含む)
- **2月** Fareit (COVID-19やCoronavirusという用語をメールへ含める)
- 3月・Emotet (検査結果や治療法に関して言及)
 - ・Trickbot (検査組織を装う)
 - ·COVIDをテーマにしたランサムウェア
- 4月・Azorult (偽のウイルス感染マップを悪用)
 - ・Hanictor (保険会社を装う)
 - ・Nanocore (予防策について言及)
 - ・NetWalkerランサムウェア (後述)

https://japan.zdnet.com/image/l/storage/35158088/storage/2020/08/13/403bad5577b9f14 e45cdd4566c490257/200812 mcafee 002.jpg

急速なリモートワークの進展による セキュリティ問題(2)

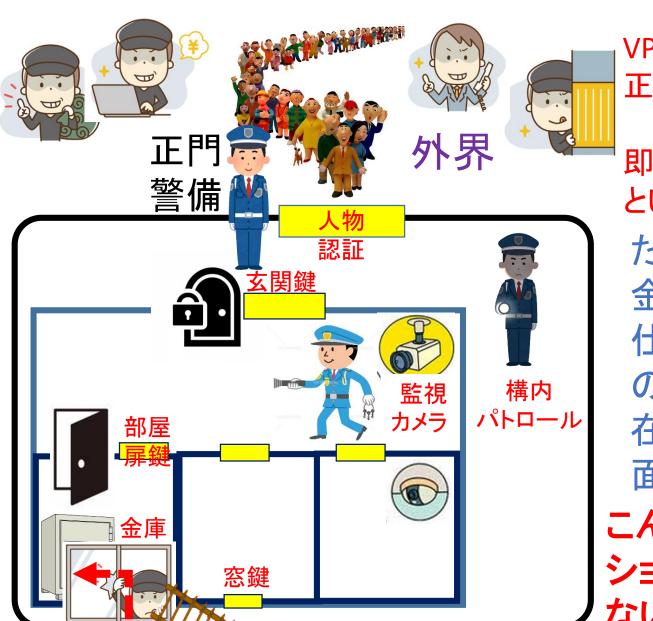
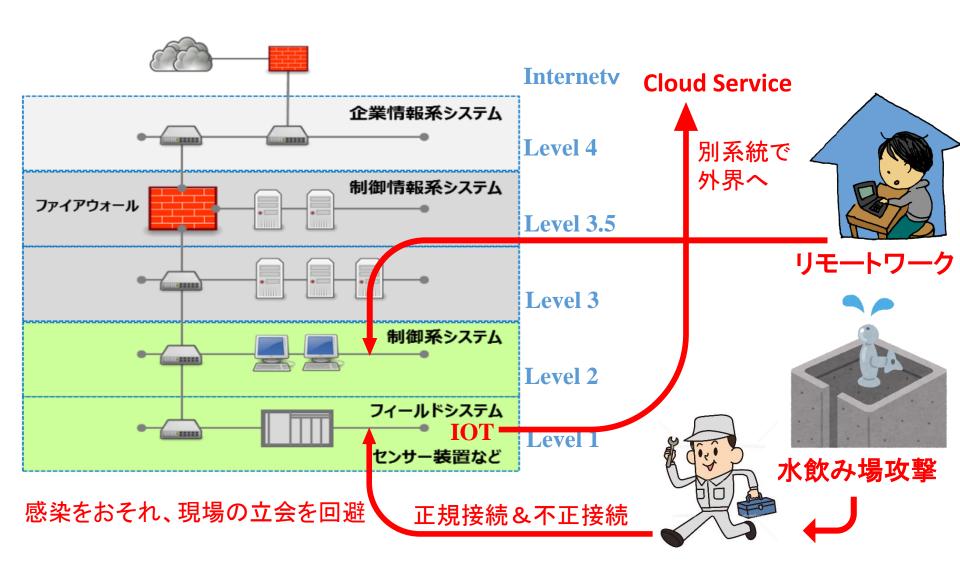

• VPNのアクセス処理能力限界と管理不備による情報漏洩

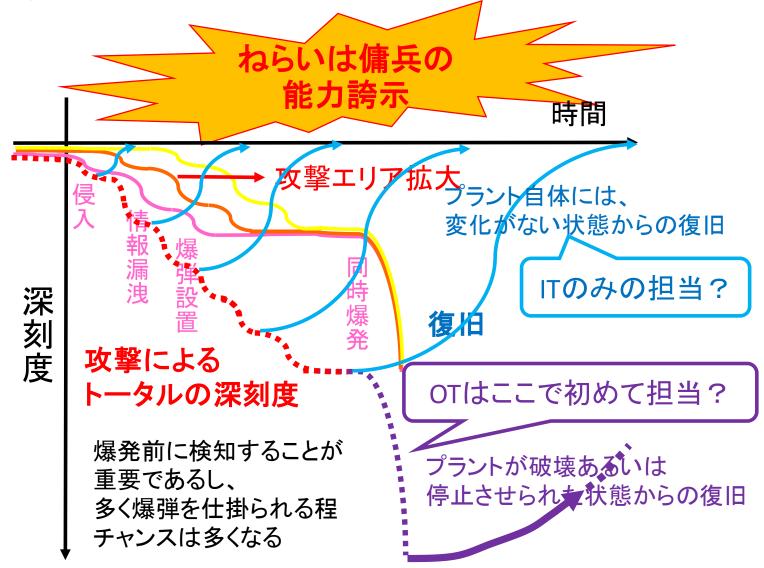
図2●脆弱性があるパルスセキュア製品を動かしているサーバーの利用状況

2019年8月25日時点のデータ。色が濃い地域ほど脆弱なVPNサーバーの数が多い。最も色が 濃い米国には5010台の脆弱なサーバーがあった。日本には1511台が存在していた。(出所: 米バッドパケッツ) https://xtech.nikkei.com/atcl/nxt/mag/nnw/18/041800012/052000103/

深層防護とTrusted Networks


VPNの認証情報漏洩は 正門の入門許可の問題

即、プラント事故発生というわけではない


ただ、従来は、 金庫の前でしか 仕事ができなかった のに、むりやり 在宅勤務になった 面がある

こんな ショートカット ないよね

外部からは階層だけど、 外からだけの想定では不足

物理的変化が起こってからでは遅い!

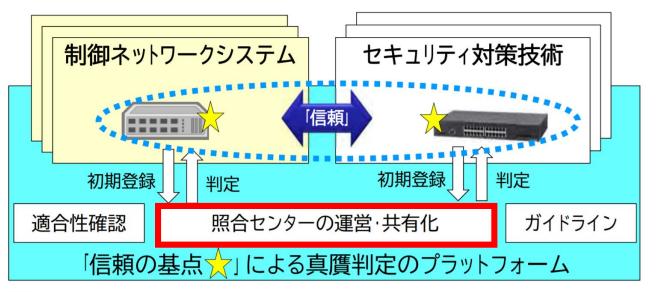
複数個所で同時に被害を発生させることで、被害が甚大になる (救急車も消防車も間に合わない)被害が発生する前になんとか。

ゼロトラスト ネットワーク

「必要な人に必要なだけのアクセス」を原則に、 認証、権限、脆弱性、検疫、脅威検知などの点で、 決して信頼せず(ゼロトラスト)、 すべてのデバイスのトラフィックの検査とログの取得を行う

急激な在宅勤務の進行で、すべての事業所で、VPNによる trusted networkを確保することの難しさが意識され、 ゼロトラストでの管理に注目が集まっている。

ユーザーが、どこにいてもという「モバイルアクセス」 高度な管理を広く適用するための「クラウド移行」 被害拡大を防止する「独立性確保」という点は、 ICSセキュリティにも有効なはず


信頼性の確保はブロックチェーンでは?

第1期SIP『重要インフラ等における サイバーセキュリティの確保』

真贋判定技術のプラットフォーム化

「信頼の基点」による真贋判定技術をプラットフォーム化し、国内 外の優れたセキュリティ技術の受け皿に(TOPの実践)

⇒国内外の関連技術との連携インタフェースに向けた国際活動

中央集権的な こんな管理が、 自由主義社会で 成立するとは 思えない!!

分散により、 改竄しきれない ブロックチェーン の発想を 導入したい

ブロックチェーン

ブロックチェーンは、ブロックと呼ばれる暗号化されたレコードが増加するリストを、ネットワーク上に分散したノードで共有し、コンセンサスをとることによって正しい情報を得る

【特徴】

- ・改ざんが非常に困難
- システムダウンが起きない
- •取引の記録を消すことができない
- •自律分散システム

【課題】

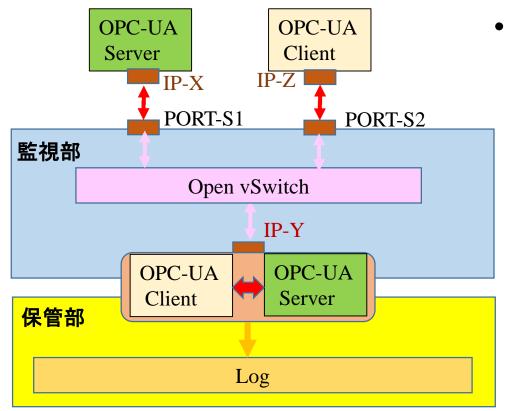
ビットコインではコンセンサスをとる計算に、全世界の消費電力の0.1%の電力を利用しているといわれている。

制御ネットワークに導入するには、分散ノードの設置とコンセンサスアルゴリズムの開発が必要

ゼロトラストとブロックチェーンのアイデアを 制御ネットワークに導入するには?

・制御系ネットワークでのセキュアな通信を実現するには OPC-UA

OPC-UAはセキュリティを考慮して設計された通信プロトコルで、Industrie4.0でも標準プロトコルとされている。

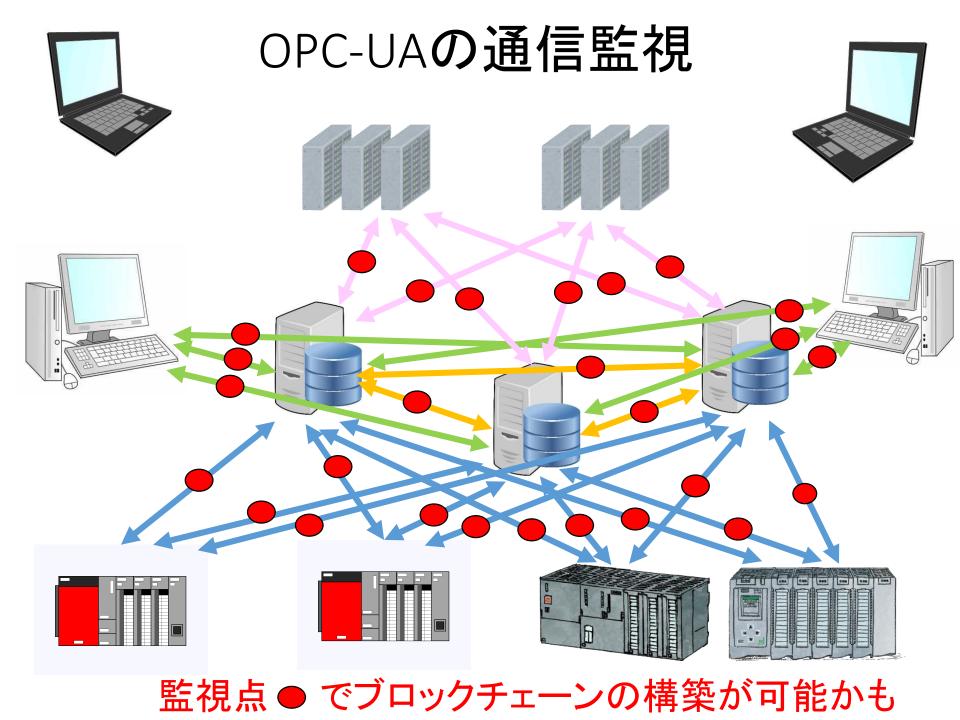

 OPC-UAは、秘密鍵・公開鍵による認証と、共通鍵による 暗号データ通信、多ベンダーの相互接続を実現する標準、 情報モデルによる構造体通信、アラームやヒストリアンな どプロセス制御に必要な機能のサポート

OPC-UAでの暗号通信の監視は?

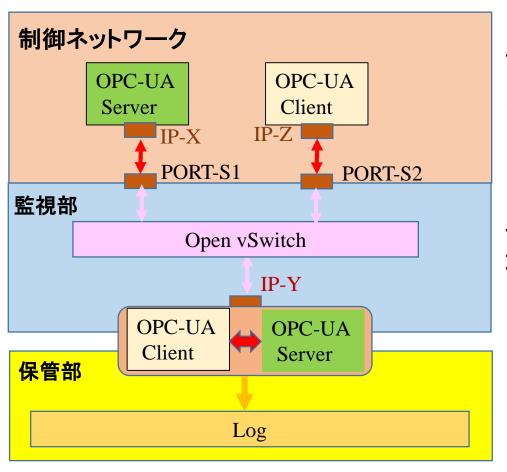
- コントローラの通信で怖いのは、正規のデバイスから危険な 指示が出されること。
- ・保守PCやSCADAのマルウェア感染や侵入による 危険な指示があれば、コントローラは、内容の判断はなく、 指示を受け入れるのが基本仕様
- 指示の変化の大きさや速度に制限を設定することは可能だが、スタートアップやシャットダウンも正常な操業範囲なので、操作量は、全閉から全開までを可動域としなければならない。
- 暗号化してしまうと、通信で監視できるのは、IPアドレスなどのヘッダ情報だけ。
- 情報系では、監視対象は通信から振舞いに移っているが、 コントローラへの指示に関しては、そのデータ部分も 監視対象としたい。

OPC-UAの通信監視

- 2つのOPC-UA通信をする機器の間に、監視用HUBを接続
- HUB内には、OPEN FlowスイッチとOPC-UAのブローカーが存在
- IP-XとIP-Zは、Publisher, Subscriberに相当するが、 ブローカーをOpenFlowで隠密化する。
- ネットワークとしては、Peer 2 Peerの暗号通信が存在する形式とする



ブローカーの情報を安全に、 別のネットワークに保存する


監視機能付きHUB

HUBに接続するときには、 OPC-UA通信の登録が必要

HUBのポートには IPアドレスはない

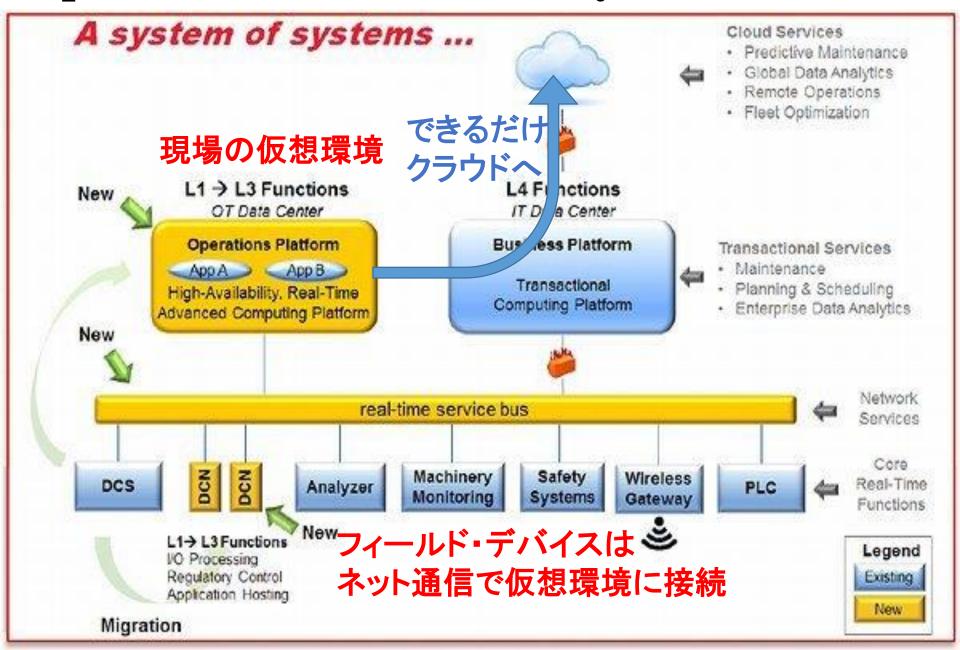
OPC-UAの通信監視

制御ネットワークは、Availability Realtime性が重要なネットワーク

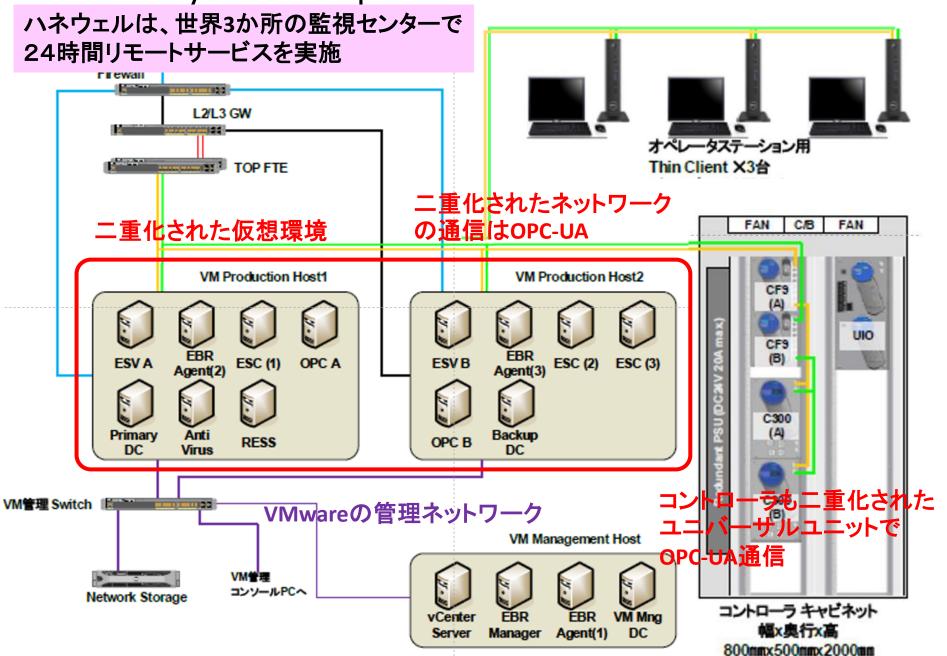
監視部で、通信の異常を処理し、 通信データを保管部に送る

保管部で、制御ネットワークと独立なネットワークを構成し、 ブロックチェーンの コンセンサス制御 異常を検知すると、 制御ネットワークを制御

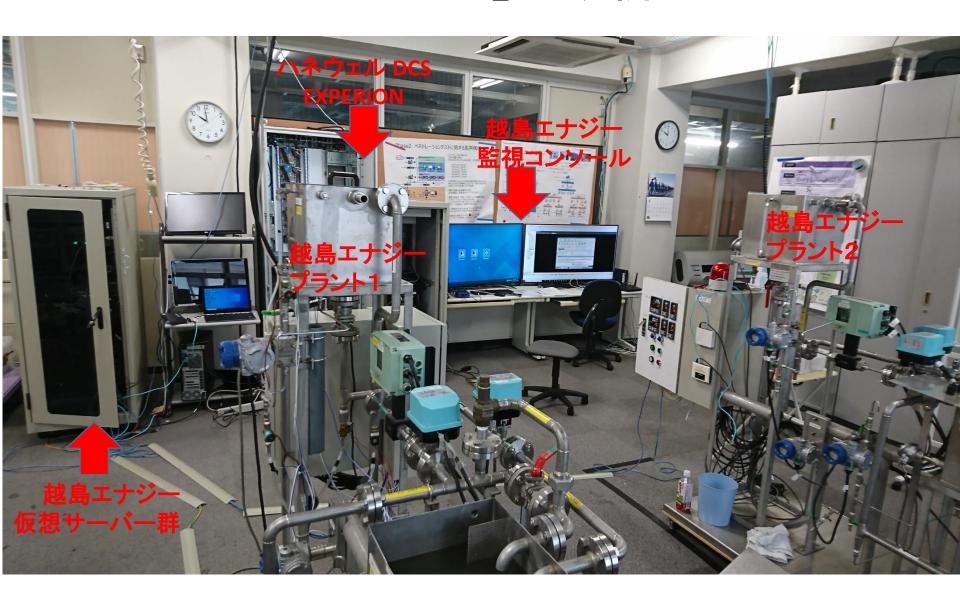
セキュリティの設計性能と運用の問題

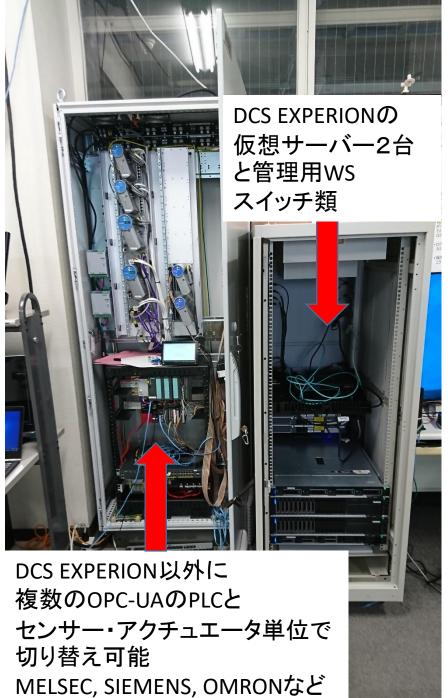

【コントローラが故障したときの保守】

- 別のコントローラに入れ替える。
- コントローラだけでなく、サーバーとクライアントの両方のOPC-UAの設定をやり直す。
- データサーバーの作業も必要なので、 現場運転員には難しいかもしれない。
- OPC-UA準拠製品には、秘密鍵をコピーできるものが存在し、コントローラの秘密鍵をコピーすれば、 OPC-UAでも、コントローラを差し替えるだけで対応できる。
- セキュリティ上は問題であるが、メンテナンスを重視したこのような運用が、今後も登場すると危惧される。


サイバーセキュリティ対策はますます高度化

- ・サイバーセキュリティ専門家の現場ごとの確保は困難
- 通信監視は必要だが、現場作業員の仕事ではない
- 現場でのセキュリティ対策をリモート化、自動化
- 異常を検知したときに、現場ができるのは、 通信が遮断された状態での操業体制を実施すること
- ・トラブル時の保守も、できるだけリモート化と自動化で対応。 OPC-UAの設定に現場作業が必要だとしても、簡素に
- 現場での脆弱性発生の可能性を下げるためには、 現場でのプログラムはできるだけシンプルに
- ・リアルタイム性の低いものは、できるだけクラウドに移行


Open Process Automation System (by Exxon)



Honeywell Experion PKS C300

「つるまいプロジェクト」は、新たなPhaseへ

EXPERION用 コンソール 越島エナジー ネットワーク用 仮想環境サーバーと IDS,IPS、 ファイアーウォール データダイオードなど

越島エナジー 仮想環境用 コンソール

システマティックなセキュリティ対策提案

• IEC62443, NIST CyberSecurity Frameworkに準拠したアプローチを越島エナジーで例示

そう言えるんだろう?

サイバー攻撃の危険性など もう聞きたくもない。 どのように対策すべきかを ちゃんと提案したまえ。 多額の投資が必要といえば、 きっとリスクは他にもあるといわれる。 でも、中途半端では意味がない。 どこから、どの程度の対策で 始めればよいのだろうか?

「いいねえ、それ。 すぐにでも始めてくれ。

って発言、 どうやったら引き出せ るんだろう?

つるまいプロジェクトへの参加を お待ちしています。

ICS研究所 MHPSコントロールシステムズ NTTコミュニケーションズ アズビル/ アズビルセキュリティフライデー アドソル日進 シュナイダーエレクトリック 立花エレテック 東陽テクニカ トレンドマイクロ 千代田システムテクノロジーズ 日本シノプシス 日本ダイレックス 日本電気 マカフィー 横河電機

(Phase 2) 2018年1月18日

